

Multi-Agent Deep Reinforcement Learning for Mobile Wireless Systems: From Distributed Power Allocation to Auction-Based RIS Access

Associate Prof. Stefan Schwarz

in collaboration with: Charmae F. Mendoza, Martin Zan, Prof. Markus Rupp and Prof. Megumi Kaneko

December 2025, stefan.schwarz@tuwien.ac.at

Technische
Universität Wien

Institute of
Telecommunications

DRL-based Distributed Uplink Power Allocation

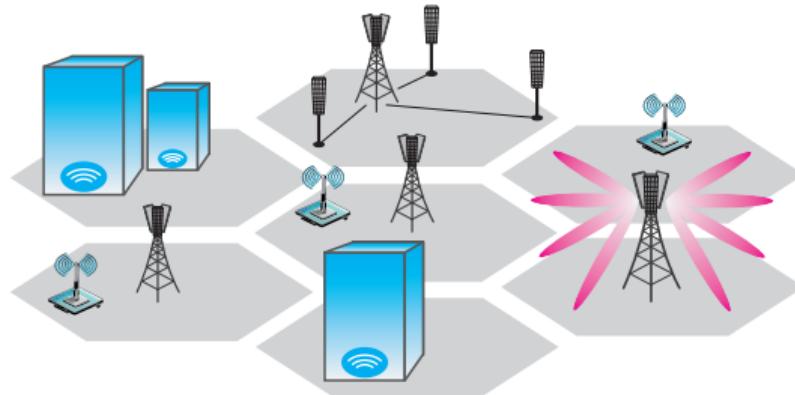
Auction-based RIS Access in Multi-Operator Environments

Conclusions

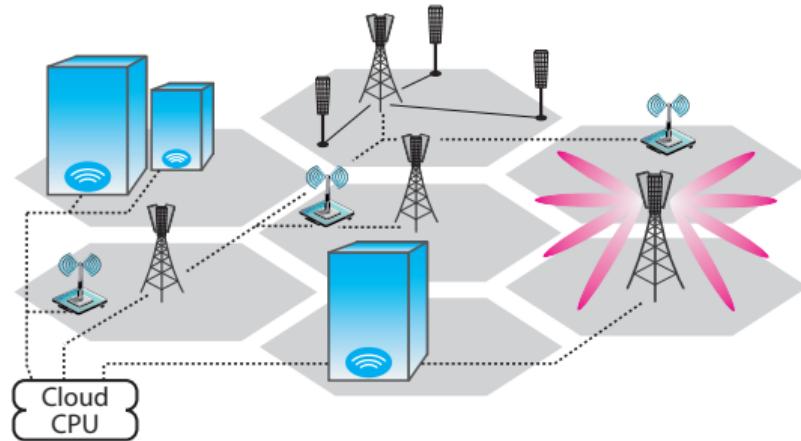
DRL-based Distributed Uplink Power Allocation

Auction-based RIS Access in Multi-Operator Environments

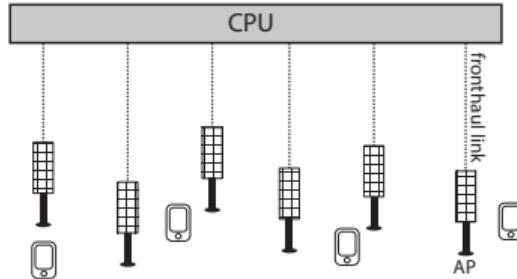
Conclusions



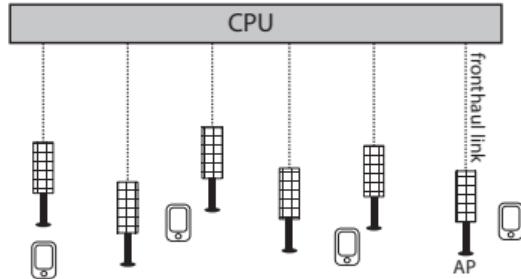
- Main issue of dense heterogeneous 4G/5G networks: inter-cell-interference



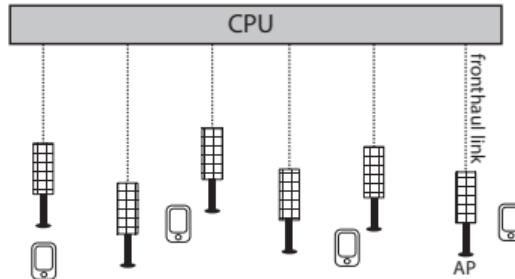
- Main issue of dense heterogeneous 4G/5G networks: inter-cell-interference
- Cell-free: independently operating cells are replaced by joint cloud-processing
⇒ Interfering signals become useful signals



- Consider a canonical cell-free system with M access points (APs) serving K users in uplink
- At a given time t , a subset $\mathcal{K}_{\text{on}}^{(t)} \subset \{1, \dots, K\}$ of users is active (slowly varying)



- Consider a canonical cell-free system with M access points (APs) serving K users in uplink
- At a given time t , a subset $\mathcal{K}_{\text{on}}^{(t)} \subset \{1, \dots, K\}$ of users is active (slowly varying)
- Depending on its SINR_k , an active user k achieves **user utility** $u_k = f(\text{SINR}_k)$



- Consider a canonical cell-free system with M access points (APs) serving K users in uplink
- At a given time t , a subset $\mathcal{K}_{\text{on}}^{(t)} \subset \{1, \dots, K\}$ of users is active (slowly varying)
- Depending on its SINR_k , an active user k achieves **user utility** $u_k = f(\text{SINR}_k)$
- The SINR depends on the users' power allocations
 - ⇒ Increasing the power ρ_k of user k will improve its utility, but may decrease other users' utilities
 - ⇒ Goal: **learn to allocate power optimally**

- **Model-based** optimization: user utility is available in analytical form
⇒ **Classical optimization** methods can be applied
- **Model-free** optimization: relies on observed data rather than (potentially inaccurate) models
⇒ **Data-driven machine learning** techniques

- **Model-based** optimization: user utility is available in analytical form
 - ⇒ **Classical optimization** methods can be applied
- **Model-free** optimization: relies on observed data rather than (potentially inaccurate) models
 - ⇒ **Data-driven machine learning** techniques
- Deep reinforcement learning (DRL): often combines both approaches
 - ⇒ Initial model-based training in simulations (digital twins), followed by real-world fine-tuning
 - ⇒ Keeps real-world training duration reasonable

- **Model-based** optimization: user utility is available in analytical form
⇒ **Classical optimization** methods can be applied
- **Model-free** optimization: relies on observed data rather than (potentially inaccurate) models
⇒ **Data-driven machine learning** techniques
- Deep reinforcement learning (DRL): often combines both approaches
⇒ Initial model-based training in simulations (digital twins), followed by real-world fine-tuning
⇒ Keeps real-world training duration reasonable
- In our simulations, we train based on the Shannon rate

$$u_k = B \left(1 - \frac{\tau_p}{\tau_c} \right) \log_2 (1 + \text{SINR}_k)$$

- SINR under MMSE detection considering pilot contamination and CSI imperfections

- **Model-based** optimization: user utility is available in analytical form
⇒ **Classical optimization** methods can be applied
- **Model-free** optimization: relies on observed data rather than (potentially inaccurate) models
⇒ **Data-driven machine learning** techniques
- Deep reinforcement learning (DRL): often combines both approaches
⇒ Initial model-based training in simulations (digital twins), followed by real-world fine-tuning
⇒ Keeps real-world training duration reasonable
- In our simulations, we train based on the Shannon rate

$$u_k = B \left(1 - \frac{\tau_p}{\tau_c} \right) \log_2 (1 + \text{SINR}_k)$$

- SINR under MMSE detection considering pilot contamination and CSI imperfections
- In practice, u_k could, for example, also be obtained from user feedback (CQI)

- We want to **maximize a global utility**:

$$\max_{\rho_1, \dots, \rho_K} U(u_1, \dots, u_K)$$

subject to: $0 \leq \rho_k \leq \rho_{\max}, \forall k$

- We want to **maximize a global utility**:

$$\max_{\rho_1, \dots, \rho_K} U(u_1, \dots, u_K)$$

subject to: $0 \leq \rho_k \leq \rho_{\max}, \forall k$

⇒ Solving this problem **centrally is not scalable** as the network size grows

- We want to **maximize a global utility**:

$$\max_{\rho_1, \dots, \rho_K} U(u_1, \dots, u_K)$$

subject to: $0 \leq \rho_k \leq \rho_{\max}, \forall k$

⇒ Solving this problem **centrally is not scalable** as the network size grows

- We need a **decentralized approach** ⇒ **multi-agent DRL**
- Scalability could be achieved via AP-clustering ⇒ each cluster handled by a DRL agent
- Here, we consider the extreme case: **one agent per user**

- We want to **maximize a global utility**:

$$\max_{\rho_1, \dots, \rho_K} U(u_1, \dots, u_K)$$

subject to: $0 \leq \rho_k \leq \rho_{\max}, \forall k$

⇒ Solving this problem **centrally is not scalable** as the network size grows

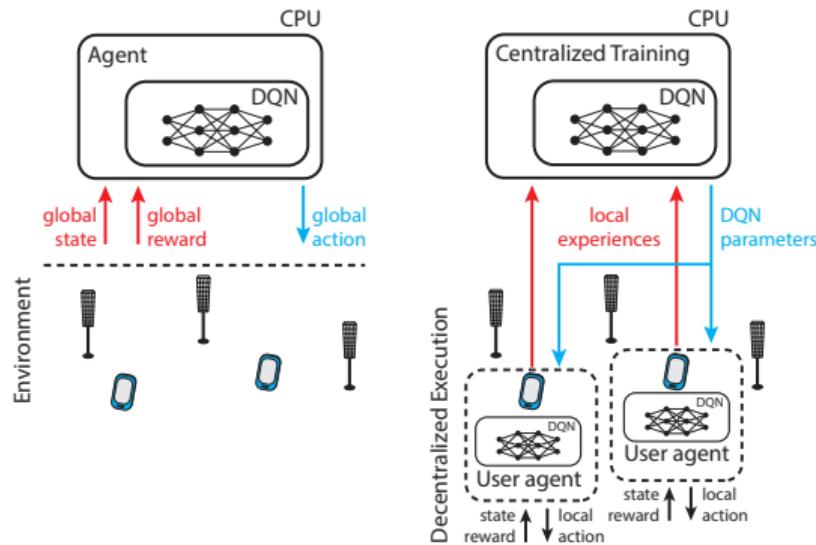
- We need a **decentralized approach** ⇒ **multi-agent DRL**
- Scalability could be achieved via AP-clustering ⇒ each cluster handled by a DRL agent
- Here, we consider the extreme case: **one agent per user**
- As an example, we consider the **guaranteed user rate** as the utility function

$$U(u_1, \dots, u_K) = \min_{k \in \mathcal{K}_{\text{on}}^{(t)}} u_k$$

Three DRL Frameworks

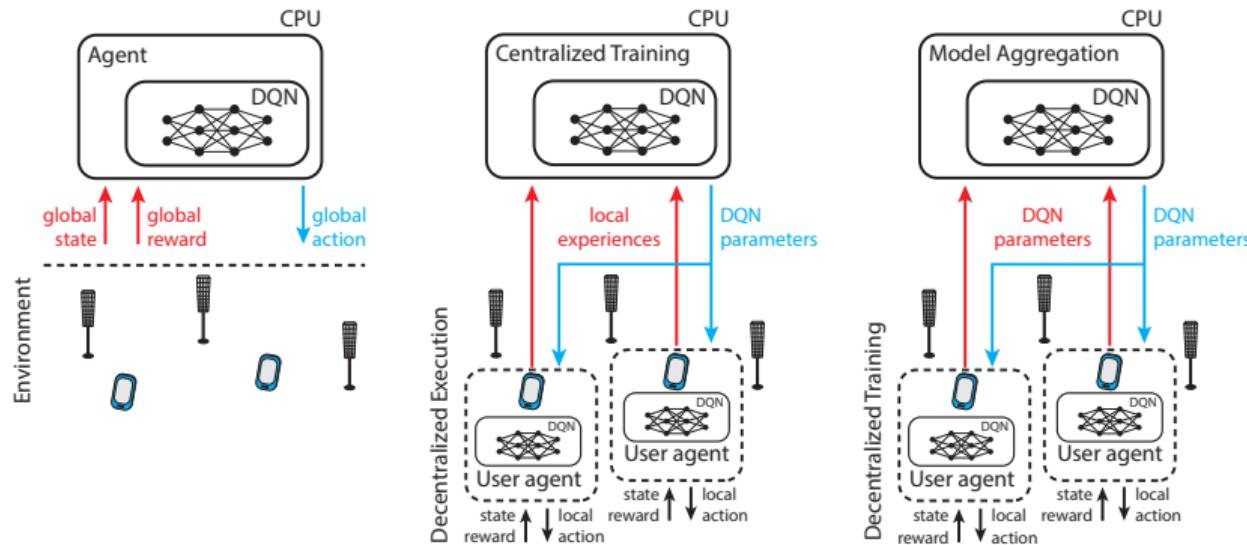
- **Single-agent RL (SARL):** CPU handles power allocation for all users

Three DRL Frameworks



- **Single-agent RL (SARL):** CPU handles power allocation for all users
- **Multi-agent RL (MARL):** users make power allocation decisions
 - **Centralized training, decentralized execution (CTDE):** same agent model shared across users

Three DRL Frameworks

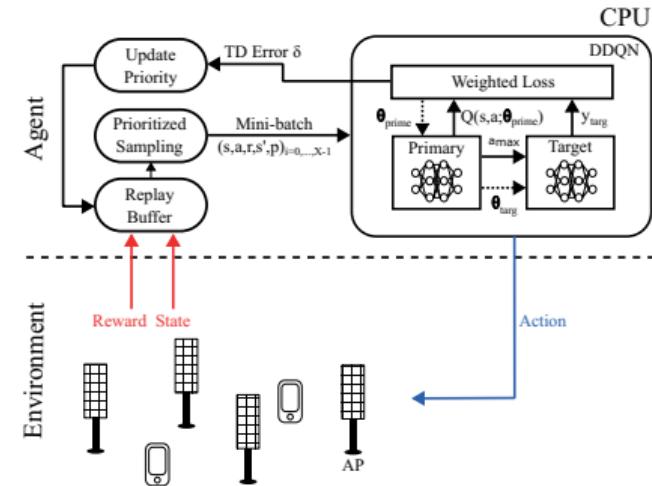


- **Single-agent RL (SARL):** CPU handles power allocation for all users
- **Multi-agent RL (MARL):** users make power allocation decisions
 - **Centralized training, decentralized execution (CTDE):** same agent model shared across users
 - **Personalized federated learning (FPer):** model parameters partially federated

- **States** of the single-agent environment

$$\mathbf{s}^{(t)} = [d_1^{(t)}, \dots, d_K^{(t)}, v_1^{(t-1)}, \dots, v_K^{(t-1)}, u_1^{(t-1)}, \dots, u_K^{(t-1)}]$$

$$v_k^{(t-1)} = \begin{cases} 1, & \text{if } \rho_k^{(t-1)} > 0 \text{ and } d_k^{(t-1)} = 0 \\ 0, & \text{else} \end{cases}$$



- **States** of the single-agent environment

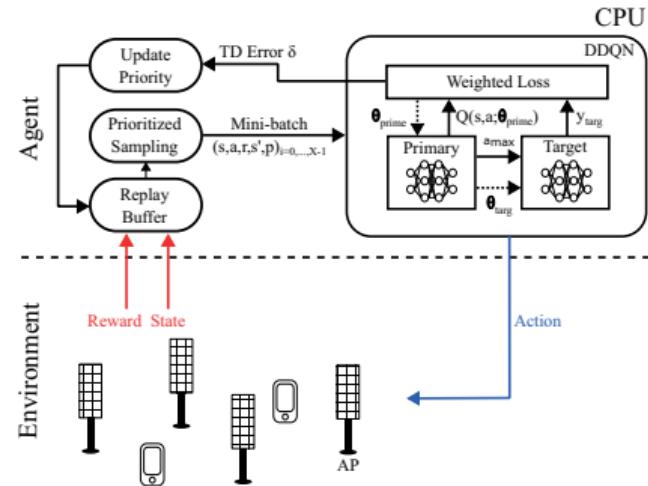
$$\mathbf{s}^{(t)} = [d_1^{(t)}, \dots, d_K^{(t)}, v_1^{(t-1)}, \dots, v_K^{(t-1)}, u_1^{(t-1)}, \dots, u_K^{(t-1)}]$$

$$v_k^{(t-1)} = \begin{cases} 1, & \text{if } \rho_k^{(t-1)} > 0 \text{ and } d_k^{(t-1)} = 0 \\ 0, & \text{else} \end{cases}$$

- **Actions** taken by the CPU

$$\mathbf{a}^{(t)} = [\rho_1^{(t)}, \dots, \rho_K^{(t)}], \quad \rho_k \in \{0, \Delta_\rho, 2\Delta_\rho, \dots, \rho_{\max}\}$$

N_{pow} possible power levels \Rightarrow action space of size N_{pow}^K



- **States** of the single-agent environment

$$\mathbf{s}^{(t)} = [d_1^{(t)}, \dots, d_K^{(t)}, v_1^{(t-1)}, \dots, v_K^{(t-1)}, u_1^{(t-1)}, \dots, u_K^{(t-1)}]$$

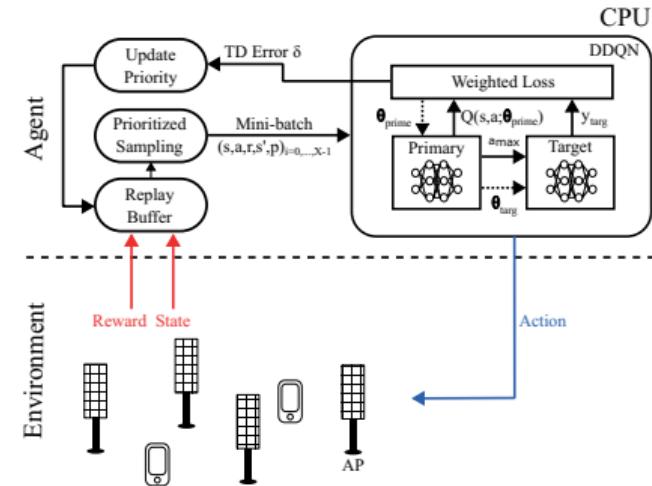
$$v_k^{(t-1)} = \begin{cases} 1, & \text{if } \rho_k^{(t-1)} > 0 \text{ and } d_k^{(t-1)} = 0 \\ 0, & \text{else} \end{cases}$$

- **Actions** taken by the CPU

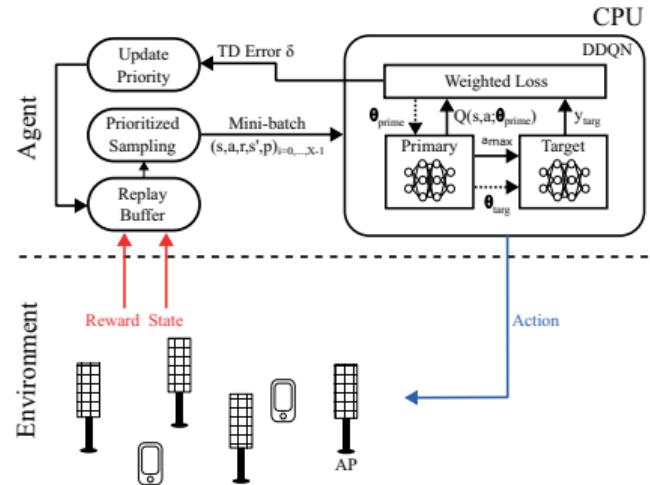
$$\mathbf{a}^{(t)} = [\rho_1^{(t)}, \dots, \rho_K^{(t)}], \quad \rho_k \in \{0, \Delta_\rho, 2\Delta_\rho, \dots, \rho_{\max}\}$$

N_{pow} possible power levels \Rightarrow action space of size N_{pow}^K

- **Rewards:** $r^{(t+1)} = \min_{k \in \mathcal{K}_{\text{on}}^{(t)}} u_k^{(t)} - \gamma \sum_{k=1}^K v_k^{(t)}$



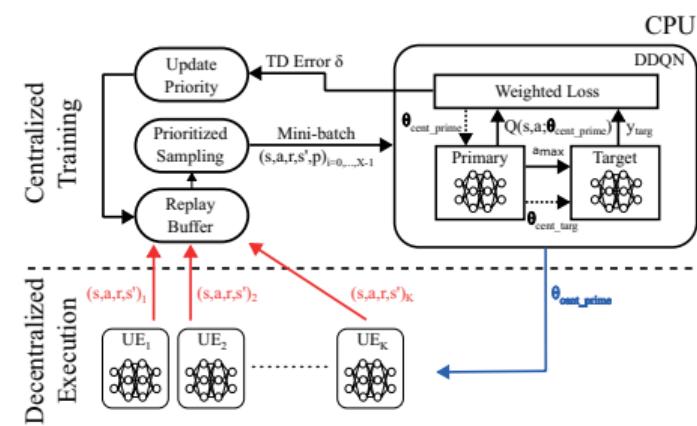
- **Double deep-Q networks (DDQN)**
 - Stabilizes training and reduces overestimation bias
 - More robust in non-stationary environments
- **Prioritized sampling**
 - Prioritizes experiences with high temporal-difference (TD) error for replay
 - Speeds up learning and improves sample efficiency
 - Can introduce bias; requires importance-sampling correction



- **User-specific** states and actions

$$\mathbf{s}_k^{(t)} = \left[u_k^{(t-1)}, u_{j \in \mathcal{N}_k}^{(t-1)} \right], \quad a_k^{(t)} = \rho_k^{(t)}$$

- **Sharing of utilities** at least in a neighborhood $\mathcal{N}_k \subseteq \mathcal{K}$
- No violation variables; only active users allocate power



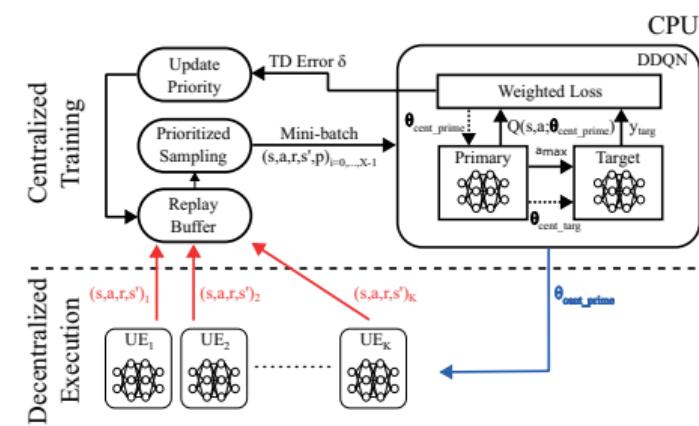
- **User-specific** states and actions

$$\mathbf{s}_k^{(t)} = \left[u_k^{(t-1)}, u_{j \in \mathcal{N}_k}^{(t-1)} \right], \quad a_k^{(t)} = \rho_k^{(t)}$$

- **Sharing of utilities** at least in a neighborhood $\mathcal{N}_k \subseteq \mathcal{K}$
- No violation variables; only active users allocate power
- **Global reward** can be calculated by CPU

$$r^{(t+1)} = \min_{k \in \mathcal{K}_{\text{on}}^{(t)}} u_k^{(t)}$$

- No need at users since training happens on CPU



- **User-specific** states and actions

$$\mathbf{s}_k^{(t)} = \left[u_k^{(t-1)}, u_{j \in \mathcal{N}_k}^{(t-1)} \right], \quad a_k^{(t)} = \rho_k^{(t)}$$

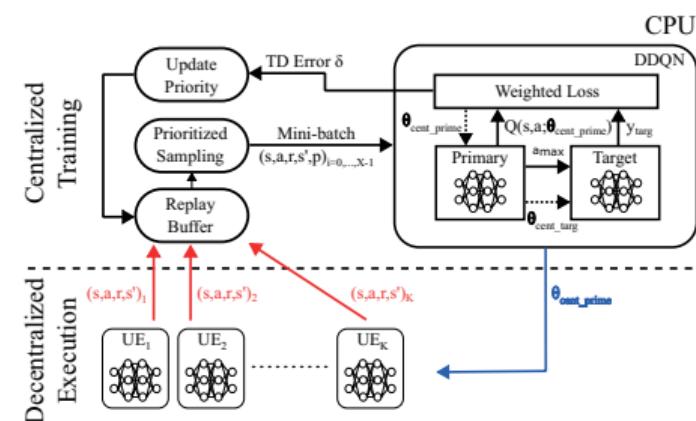
- **Sharing of utilities** at least in a neighborhood $\mathcal{N}_k \subseteq \mathcal{K}$
- No violation variables; only active users allocate power
- **Global reward** can be calculated by CPU

$$r^{(t+1)} = \min_{k \in \mathcal{K}_{\text{on}}^{(t)}} u_k^{(t)}$$

- No need at users since training happens on CPU
- Training at CPU based on **users' experiences**

$$\left(\mathbf{s}_k^{(t)}, a_k^{(t)}, r^{(t+1)}, \mathbf{s}_k^{(t+1)} \right)$$

- Reporting of action $a_k^{(t)}$ is sufficient (could be estimated)

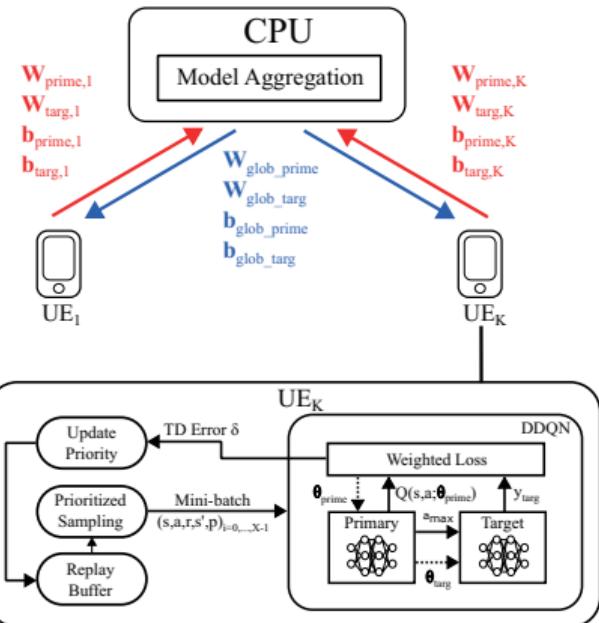


- Users train local models based on their **local experiences**

$$\left(\mathbf{s}_k^{(t)}, a_k^{(t)}, r_k^{(t+1)}, \mathbf{s}_k^{(t+1)} \right),$$

$$r_k^{(t+1)} = \min_{j \in \mathcal{N}_k} u_j^{(t)}$$

- States/rewards are determined over the **neighborhood \mathcal{N}_k**
- Interference is negligible if users are sufficiently separated

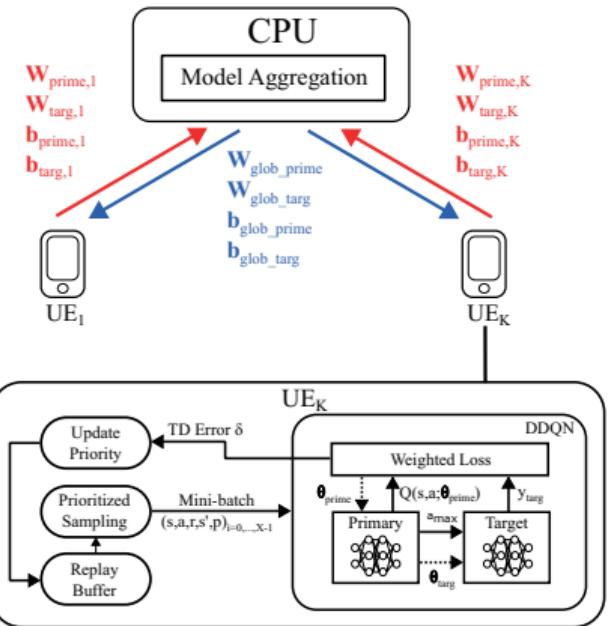


- Users train local models based on their **local experiences**

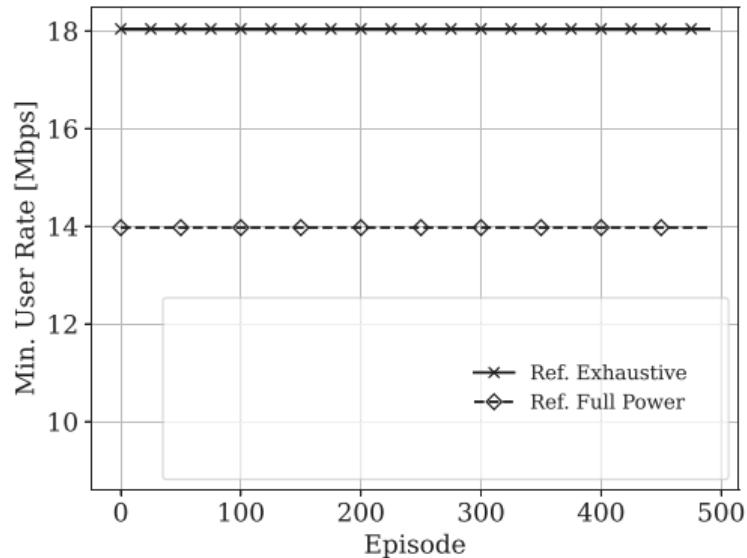
$$\left(\mathbf{s}_k^{(t)}, a_k^{(t)}, r_k^{(t+1)}, \mathbf{s}_k^{(t+1)} \right),$$

$$r_k^{(t+1)} = \min_{j \in \mathcal{N}_k} u_j^{(t)}$$

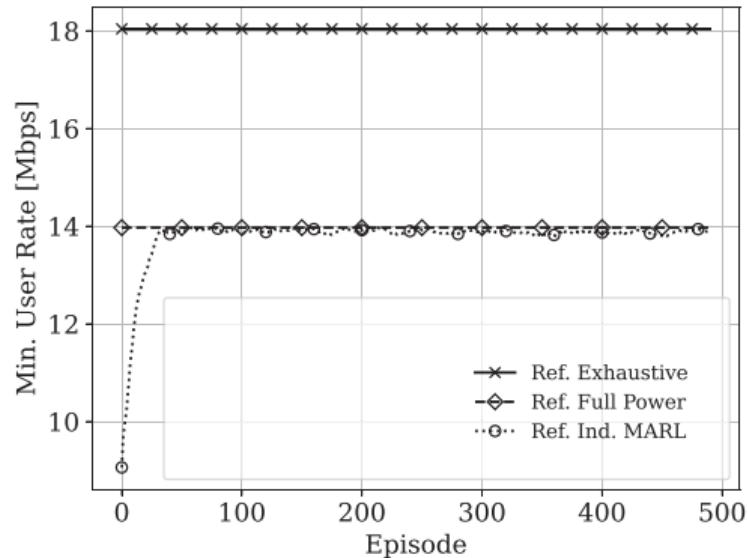
- States/rewards are determined over the **neighborhood \mathcal{N}_k**
- Interference is negligible if users are sufficiently separated
- Early DDQN layers are periodically shared with the CPU
- CPU aggregates users' layers and returns a federated model



Comparison of DRL Frameworks – Static Scenario

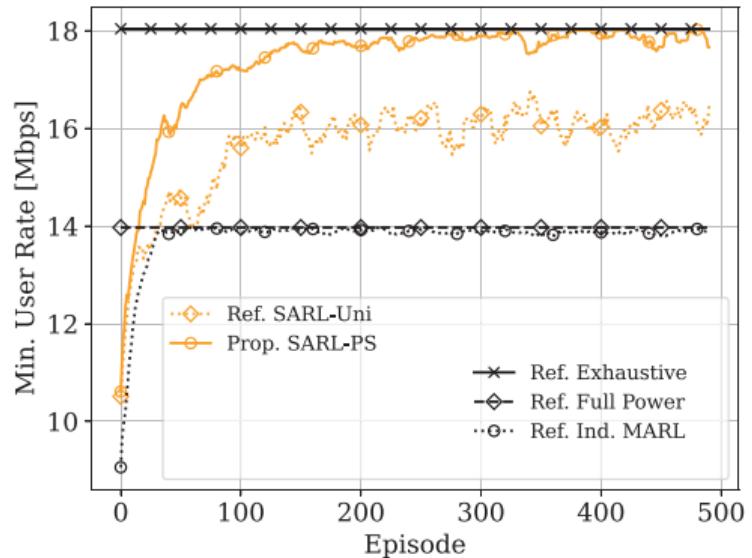


- Small-scale scenario to allow for exhaustive search (best case upper bound)
- Selfish behavior (full power transmission) leads to reduced guaranteed rate



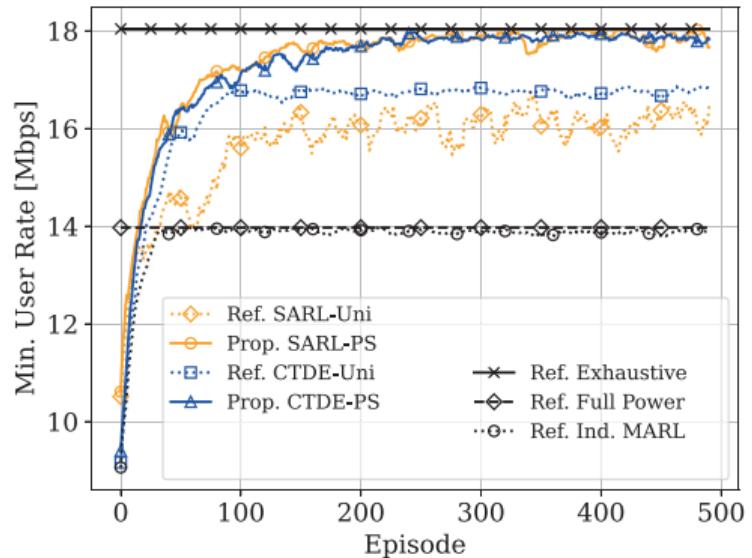
- Small-scale scenario to allow for exhaustive search (best case upper bound)
- Selfish behavior (full power transmission) leads to reduced guaranteed rate

Comparison of DRL Frameworks – Static Scenario



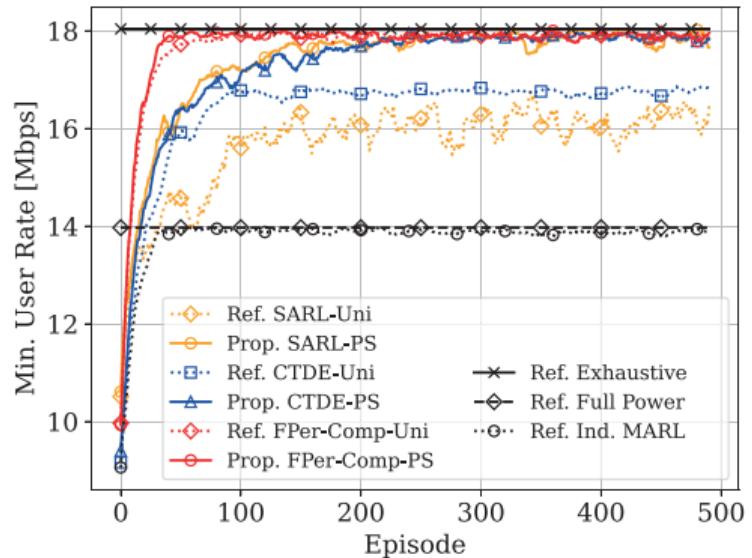
- Small-scale scenario to allow for exhaustive search (best case upper bound)
- Selfish behavior (full power transmission) leads to reduced guaranteed rate

Comparison of DRL Frameworks – Static Scenario

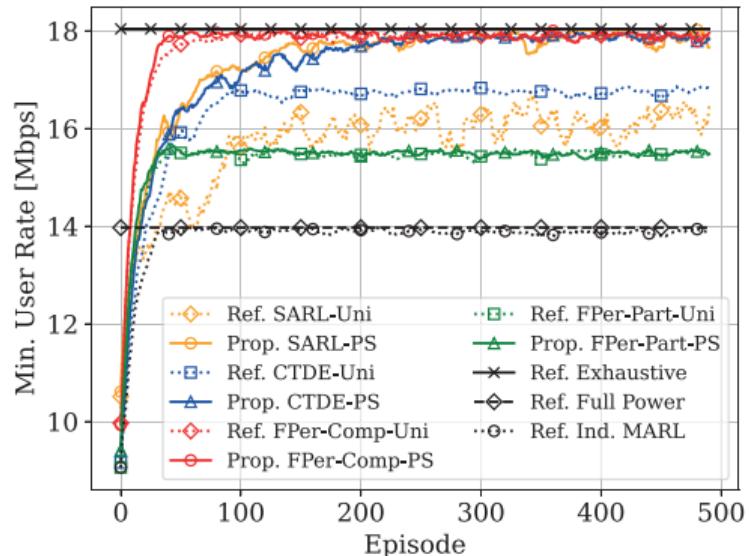


- Small-scale scenario to allow for exhaustive search (best case upper bound)
- Selfish behavior (full power transmission) leads to reduced guaranteed rate

Comparison of DRL Frameworks – Static Scenario

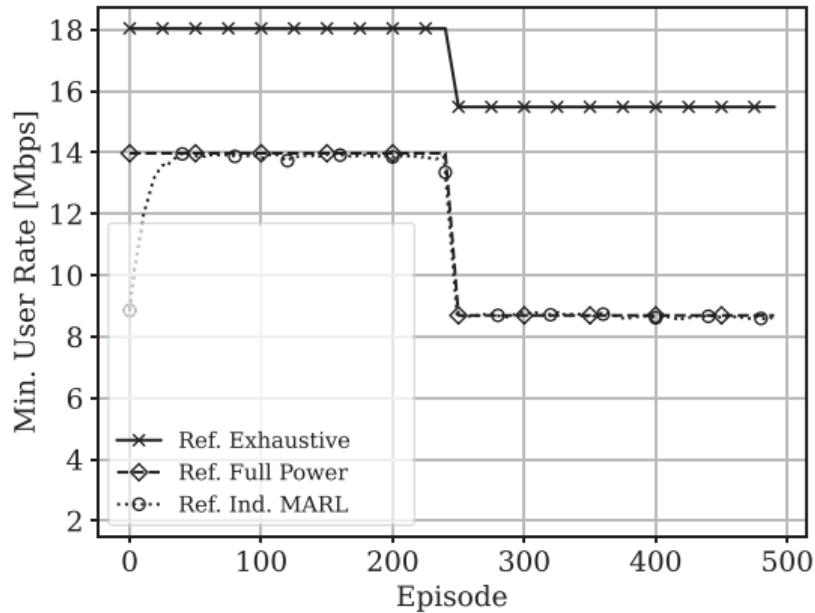


- Small-scale scenario to allow for exhaustive search (best case upper bound)
- Selfish behavior (full power transmission) leads to reduced guaranteed rate



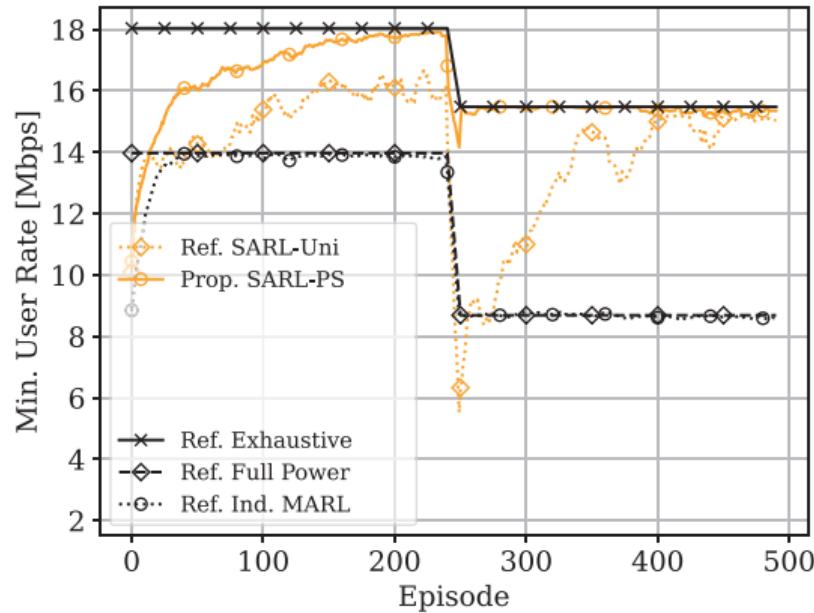
- Small-scale scenario to allow for exhaustive search (best case upper bound)
- Selfish behavior (full power transmission) leads to reduced guaranteed rate
- Considering a neighborhood of only 40% of closest users is here not sufficient (small scenario)

Comparison of DRL Frameworks – Transient Scenario



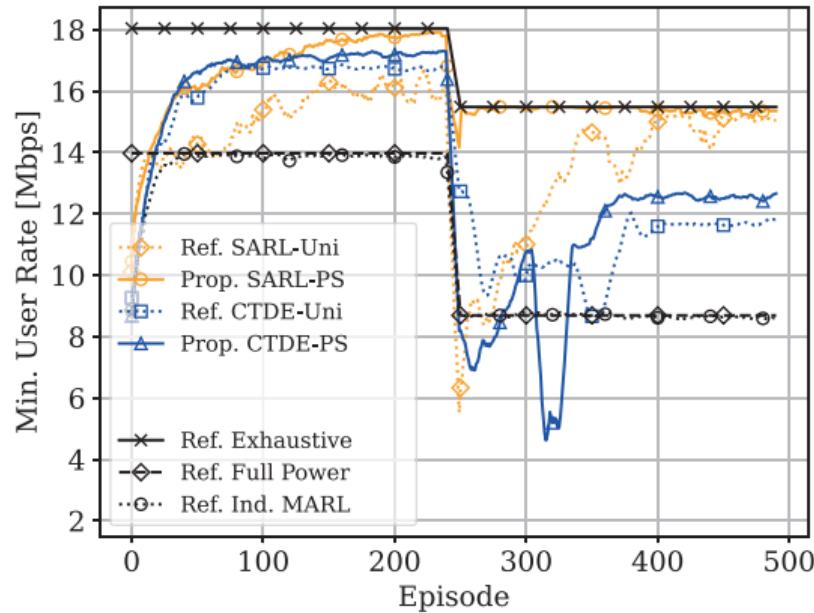
- Toggling of activation state of 20% of users after 250 episodes
- Personalized federated learning provides robust and fast adaptation capabilities

Comparison of DRL Frameworks – Transient Scenario



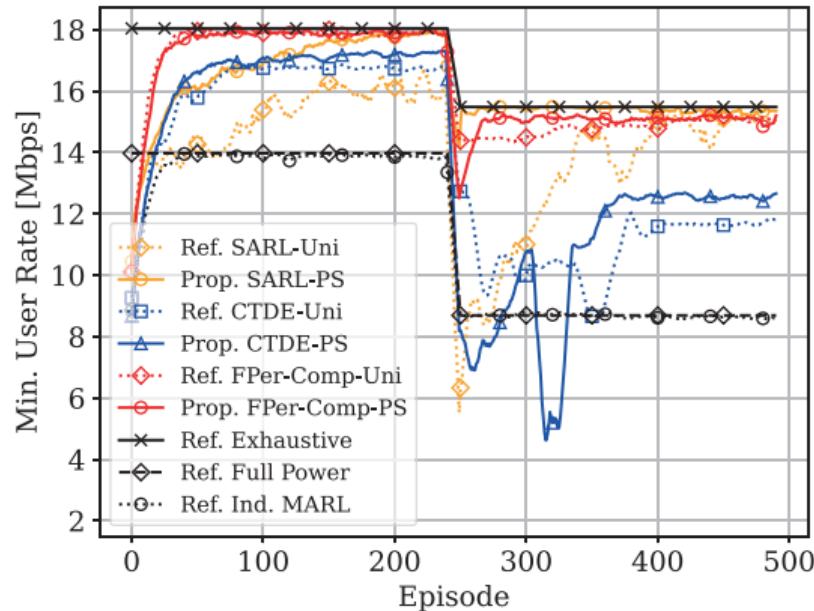
- Toggling of activation state of 20% of users after 250 episodes
- Personalized federated learning provides robust and fast adaptation capabilities

Comparison of DRL Frameworks – Transient Scenario



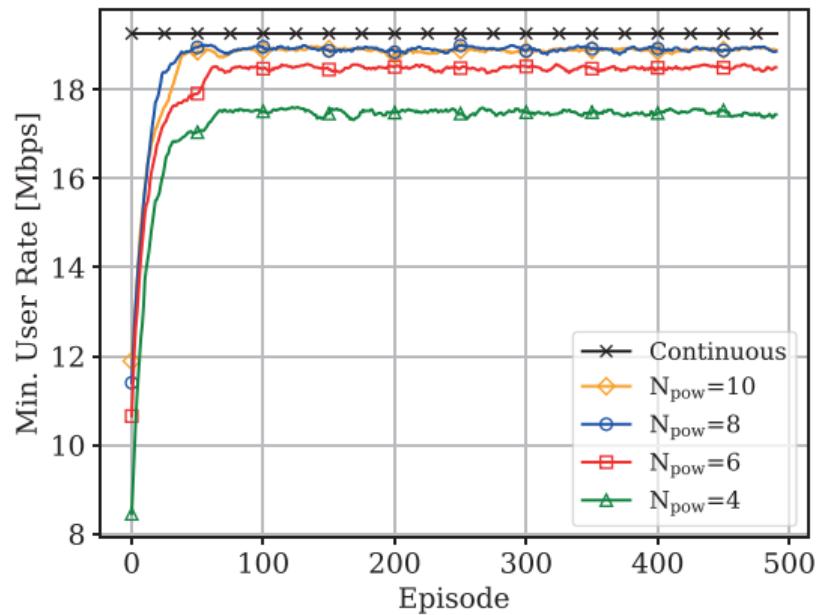
- Toggling of activation state of 20% of users after 250 episodes
- Personalized federated learning provides robust and fast adaptation capabilities

Comparison of DRL Frameworks – Transient Scenario



- Toggling of activation state of 20% of users after 250 episodes
- Personalized federated learning provides robust and fast adaptation capabilities

Impact of Number of Power Levels



- Performance close to continuous power allocation with modest number of discrete power levels

- The interference landscape is currently inferred from rate observations
 - ⇒ Makes it relatively difficult for the DNN to disentangle mutual inter-dependencies
 - ⇒ Acceptable when training in a DT, but too slow to adapt in direct real-world deployment

- The interference landscape is currently inferred from rate observations
 - ⇒ Makes it relatively difficult for the DNN to disentangle mutual inter-dependencies
 - ⇒ Acceptable when training in a DT, but too slow to adapt in direct real-world deployment
- Extend the state-space to provide additional information about mutual interference (path gains)
- Incorporate network structure into the DQN – graph neural networks (GNNs)

- The interference landscape is currently inferred from rate observations
 - ⇒ Makes it relatively difficult for the DNN to disentangle mutual inter-dependencies
 - ⇒ Acceptable when training in a DT, but too slow to adapt in direct real-world deployment
- Extend the state-space to provide additional information about mutual interference (path gains)
- Incorporate network structure into the DQN – graph neural networks (GNNs)
- Generalization and transferability across environments, user numbers, . . .

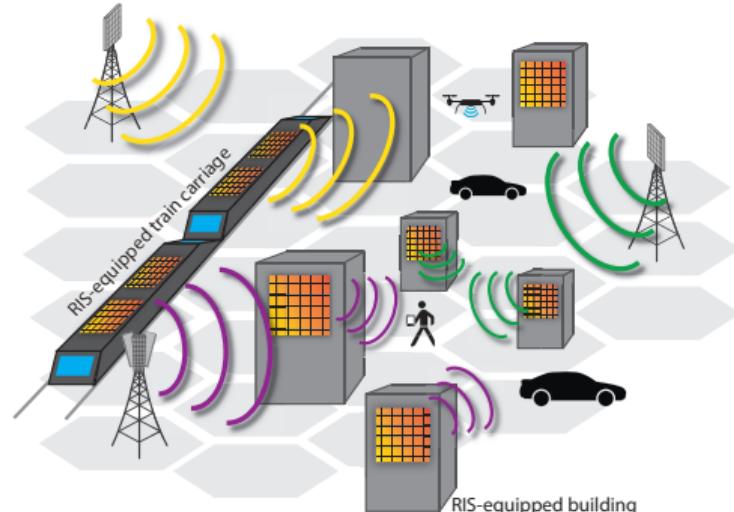
DRL-based Distributed Uplink Power Allocation

Auction-based RIS Access in Multi-Operator Environments

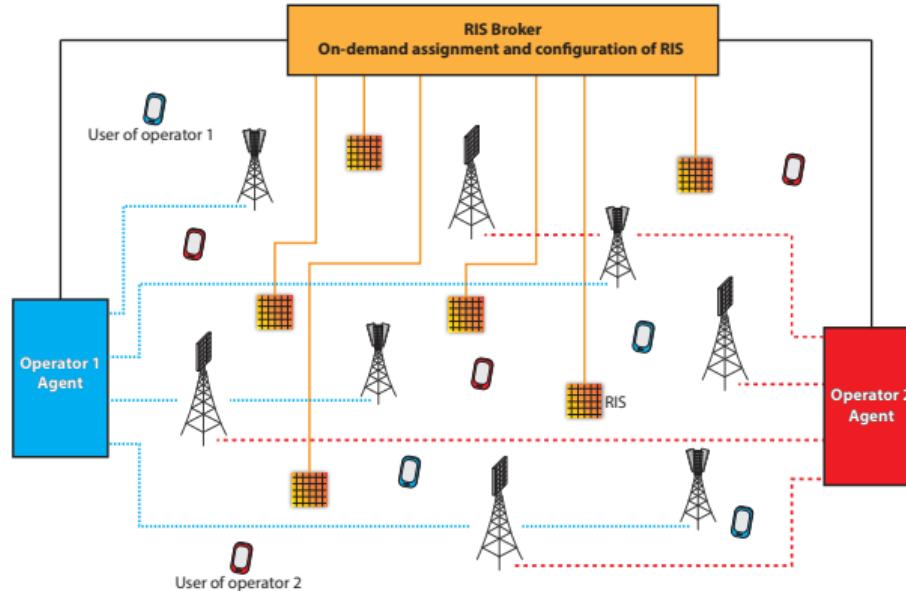
Conclusions

- RIS may be **integrated into various objects**
⇒ Network operators are unlikely to have a monopoly on their deployment
- RIS technology can potentially **support multiple frequency bands**
⇒ Not restricted to a single operator
- **Who should** be allowed to **control the RIS response** configuration?

⇒ We propose a **competitive free-market** setup



RIS Brokering in Cell-free MIMO Setups



- RIS control is dynamically assigned to operators by a RIS broker
- RIS-to-operator assignment is achieved through an auction
- The auction is repeated whenever there are significant changes in demand or user positions

- Simple auction format: **simultaneously ascending forward auction**
 - In auction-round t , RIS broker sets a uniform price $p_t > p_{t-1}$ for available RISs
 - Operators bid on RISs for which they are willing to pay the current price p_t
 - If only one operator bids on an RIS, it is assigned to this operator for payment p_t
 - If RISs are remaining, proceed to next round $t + 1$

- Simple auction format: **simultaneously ascending forward auction**
 - In auction-round t , RIS broker sets a uniform price $p_t > p_{t-1}$ for available RISs
 - Operators bid on RISs for which they are willing to pay the current price p_t
 - If only one operator bids on an RIS, it is assigned to this operator for payment p_t
 - If RISs are remaining, proceed to next round $t + 1$
 - Auctioneer enforces an **activity rule** – bidders cannot enter late

- Simple auction format: **simultaneously ascending forward auction**
 - In auction-round t , RIS broker sets a uniform price $p_t > p_{t-1}$ for available RISs
 - Operators bid on RISs for which they are willing to pay the current price p_t
 - If only one operator bids on an RIS, it is assigned to this operator for payment p_t
 - If RISs are remaining, proceed to next round $t + 1$
 - Auctioneer enforces an **activity rule** – bidders cannot enter late
- Challenges for operators:
 - How to **estimate the value of a RIS** and decide whether or not to pay price p_t ?
⇒ The value of a RIS depends on which other RISs can be secured (combinatorial)
 - How to design an **efficient bidding strategy**?

- We employ the **α -fair function family** to quantify the utility of a RIS allocation \mathcal{R}

$$U^{(o)}(\mathcal{R}) = \frac{\sum_{u=1}^{N_U^{(o)}} \left(\bar{r}_u^{(o)}(\mathcal{R}) \right)^{1/\alpha}}{\sum_{u=1}^{N_U^{(o)}} \left(\bar{r}_u^{(o)}(\emptyset) \right)^{1/\alpha}} - 1$$

... $\bar{r}_u^{(o)}(\mathcal{R})$ estimate of achievable rate of user u

$\alpha = 1 \dots$ sum-rate, $\alpha \rightarrow 0 \dots$ max user rate, $\alpha \rightarrow \infty \dots$ max-min user rate

- We employ the **α -fair function family** to quantify the utility of a RIS allocation \mathcal{R}

$$U^{(o)}(\mathcal{R}) = \frac{\sum_{u=1}^{N_U^{(o)}} \left(\bar{r}_u^{(o)}(\mathcal{R}) \right)^{1/\alpha}}{\sum_{u=1}^{N_U^{(o)}} \left(\bar{r}_u^{(o)}(\emptyset) \right)^{1/\alpha}} - 1$$

... $\bar{r}_u^{(o)}(\mathcal{R})$ estimate of achievable rate of user u

$\alpha = 1 \dots$ sum-rate, $\alpha \rightarrow 0 \dots$ max user rate, $\alpha \rightarrow \infty \dots$ max-min user rate

- **Rate estimation is based on macroscopic channel parameters**, because the microscopic fading channel is not known prior to RIS assignment

$$\hat{\beta}_u = \frac{\gamma_{u,d}^2 P_{u,d} + \left(\sum_{r \in \mathcal{R}_d} \gamma_{u,r} \gamma_{r,d} k_{u,r} \sqrt{\frac{P_{u,d} M_{\text{BS}}}{|\mathcal{R}_d|}} M_{\text{RIS}} \right)^2 + \sum_{r \in \mathcal{R}_d} \gamma_{u,r}^2 \gamma_{r,d}^2 \bar{k}_{u,r}^2 \frac{P_{u,d} M_{\text{BS}}}{|\mathcal{R}_d|} M_{\text{RIS}}}{\sigma_n^2 + \sum_{b \neq d} \gamma_{u,b}^2 P_{j_b,b} + \sum_{b \neq d} \sum_{r \notin \mathcal{R}_d} \gamma_{u,r}^2 \gamma_{b,r}^2 P_{j_b,b} M_{\text{RIS}}}$$

- **Bidding** in auction-round t based on the value of acquiring an additional RIS r

$$V_t^{(o)}(r) = U^{(o)} \left(\mathcal{R}_{t-1}^{(o)} \cup r \right) - U^{(o)} \left(\mathcal{R}_{t-1}^{(o)} \right)$$

... assuming r is the sole secured RIS in round t – breaking combinatorial complexity

- **Bidding** in auction-round t based on the value of acquiring an additional RIS r

$$V_t^{(o)}(r) = U^{(o)}\left(\mathcal{R}_{t-1}^{(o)} \cup r\right) - U^{(o)}\left(\mathcal{R}_{t-1}^{(o)}\right)$$

... assuming r is the sole secured RIS in round t – breaking combinatorial complexity

- **Observations** available to operators/agents

$$\mathcal{O}_t^{(o)} = \left(p_t, B_t^{(o)}, \left\{ V_t^{(o)}(r) \mid \forall r \right\} \right)$$

... only partial information; not the full state of the environment

- **Bidding** in auction-round t based on the value of acquiring an additional RIS r

$$V_t^{(o)}(r) = U^{(o)}\left(\mathcal{R}_{t-1}^{(o)} \cup r\right) - U^{(o)}\left(\mathcal{R}_{t-1}^{(o)}\right)$$

... assuming r is the sole secured RIS in round t – breaking combinatorial complexity

- **Observations** available to operators/agents

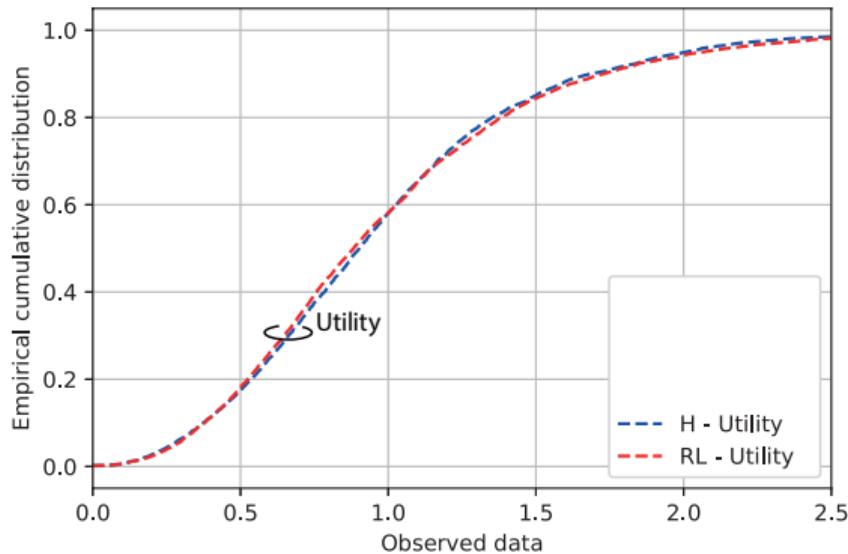
$$\mathcal{O}_t^{(o)} = \left(p_t, B_t^{(o)}, \left\{ V_t^{(o)}(r) \mid \forall r \right\} \right)$$

... only partial information; not the full state of the environment

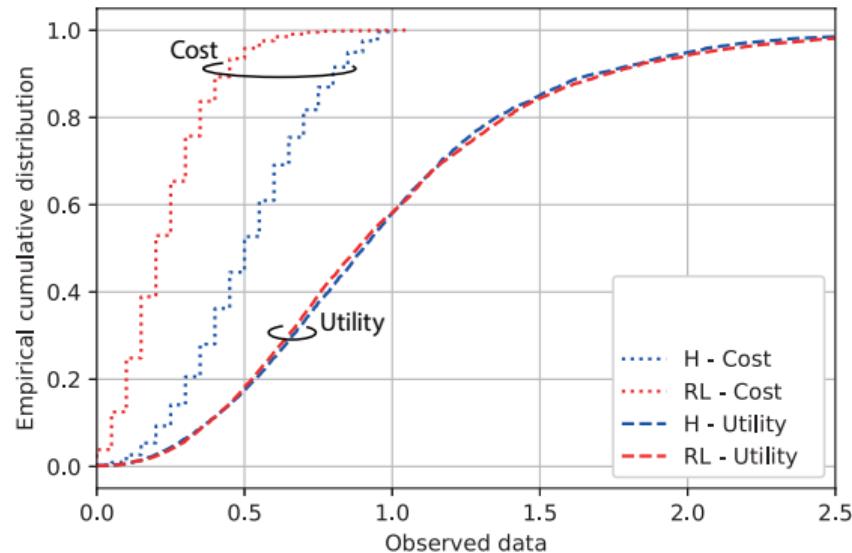
- **Reward** achieved when winning RISs $w_t^{(o)}$

$$r^{(o)} = c_V^{(o)} V_t^{(o)}\left(w_t^{(o)}\right) - p_t \left|w_t^{(o)}\right|.$$

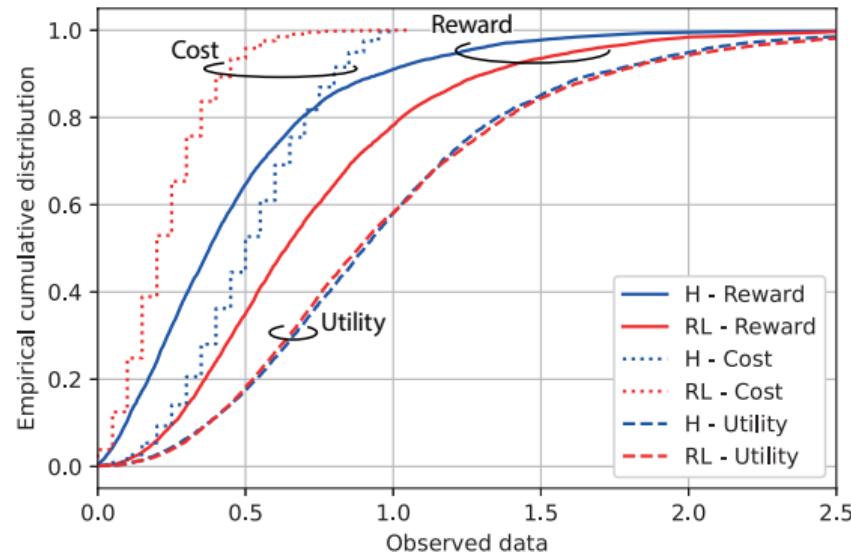
Penalty terms when bidding on already assigned RISs and when overshooting the budget



- Simple greedy bidding is a dominant strategy in terms of utility for each operator

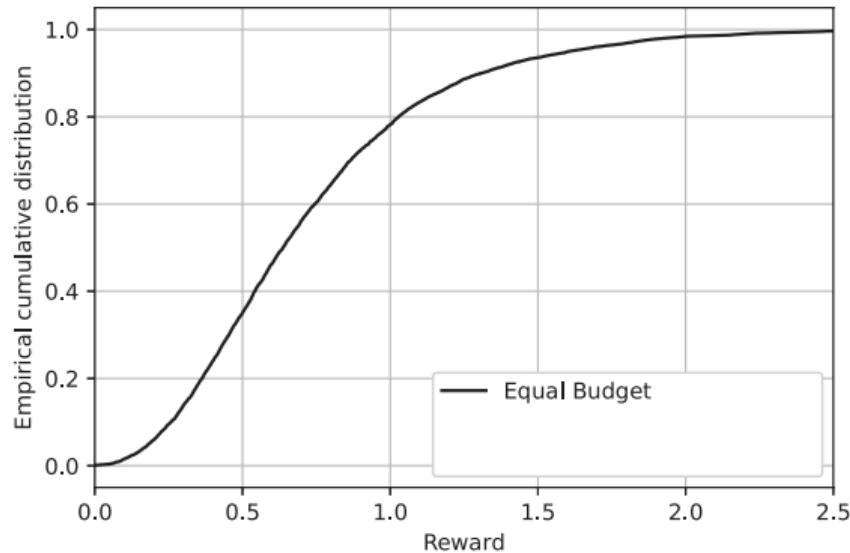


- Simple greedy bidding is a dominant strategy in terms of utility for each operator
- However, it is much more costly than DRL-based bidding



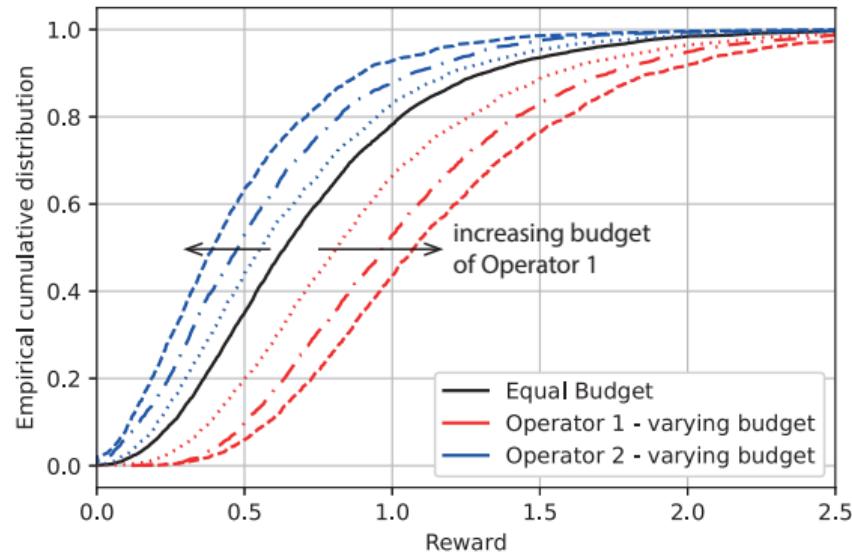
- Simple greedy bidding is a dominant strategy in terms of utility for each operator
- However, it is much more costly than DRL-based bidding
- Thus, DRL-based bidding achieves higher reward than greedy bidding

Investigation of Operators' Budgets



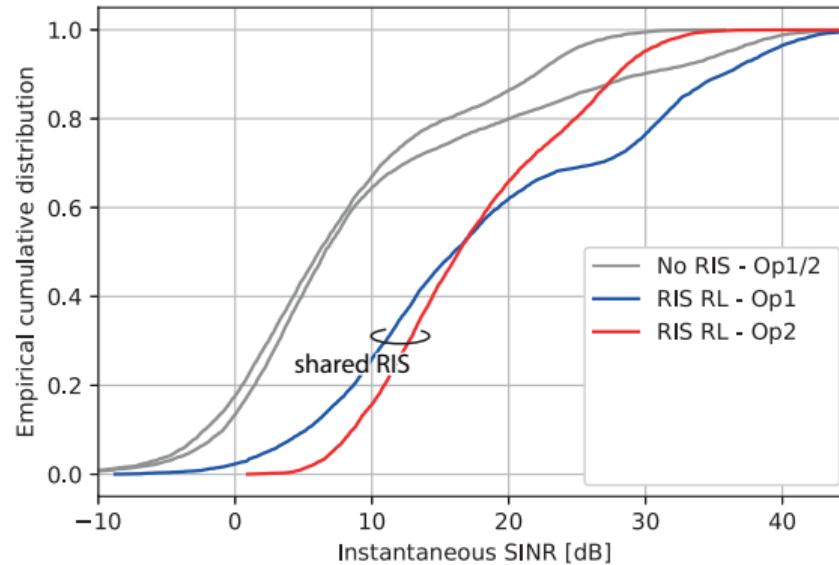
- With equal budgets both operators achieve the same performance for reasons of symmetry

Investigation of Operators' Budgets



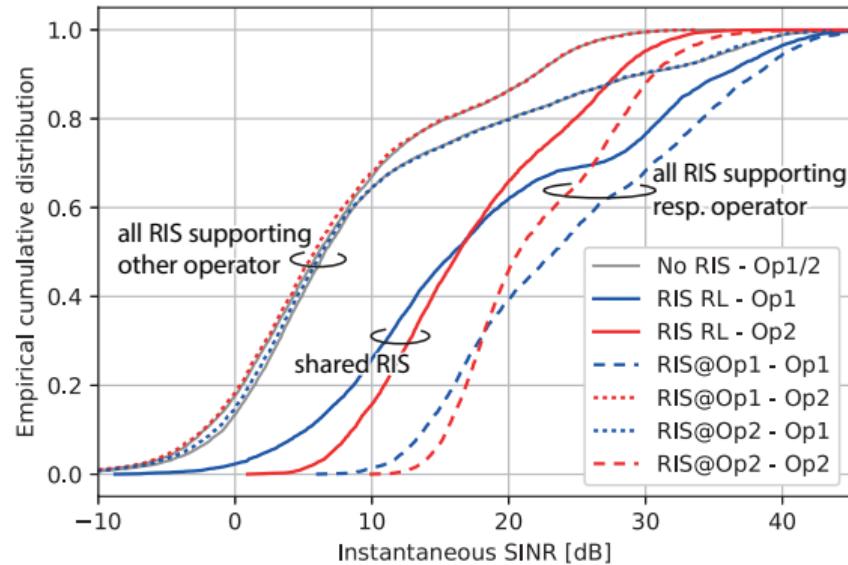
- With equal budgets both operators achieve the same performance for reasons of symmetry
- If one operator is willing to spend more, it can secure more RISs and therefore boost its performance

Investigation of Users' SINRs



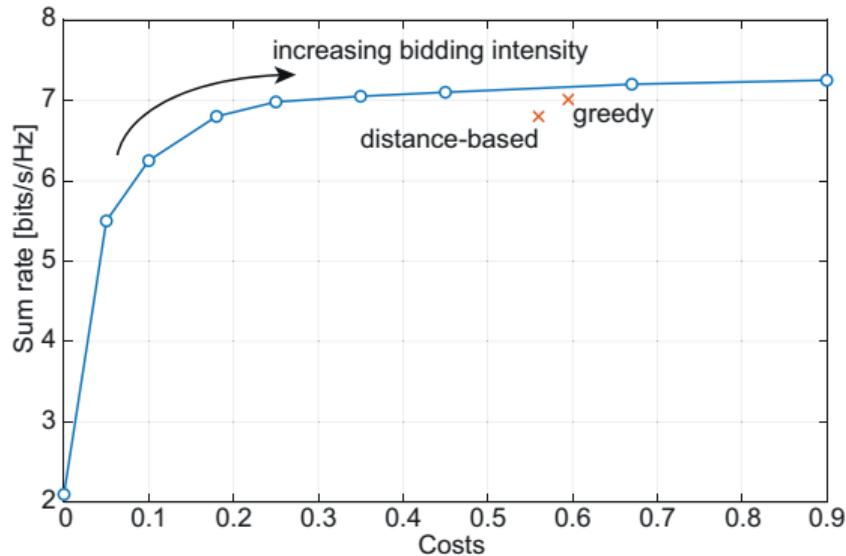
- Single snapshot of positions of network elements; distribution over users and microscopic fading

Investigation of Users' SINRs



- Single snapshot of positions of network elements; distribution over users and microscopic fading
- Sharing RISs can significantly improve the performance of both operators
- If all RISs are assigned to one operator, the performance of the other remains virtually unaffected

Varying the Bidding Intensity



- Bidding intensity $c_V^{(o)}$: how much operators are willing to spend

$$r^{(o)} = c_V^{(o)} V_t^{(o)}(w_t^{(o)}) - p_t |w_t^{(o)}|.$$

DRL-based Distributed Uplink Power Allocation

Auction-based RIS Access in Multi-Operator Environments

Conclusions

- Multi-agent RL enables efficient decentralized, model-free optimization
- Real-world deployment can be improved through model-based pre-training or training within a digital twin
- Approaches to coordinating multiple agents include:
 - CTDE or FPer in cooperative scenarios with common goals
 - Game-theoretic mechanisms such as auctions in competitive scenarios

Multi-Agent Deep Reinforcement Learning for Mobile Wireless Systems: From Distributed Power Allocation to Auction-Based RIS Access

Associate Prof. Stefan Schwarz

in collaboration with: Charmae F. Mendoza, Martin Zan, Prof. Markus Rupp and Prof. Megumi Kaneko

December 2025, stefan.schwarz@tuwien.ac.at

Technische
Universität Wien

Institute of
Telecommunications

