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Cell-free Massive MIMO

• Main issue of dense heterogeneous 4G/5G networks: inter-cell-interfence

• Cell-free: independently operating cells are replaced by joint cloud-processing

⇒ Interfering signals become useful signals
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Cell-free Massive MIMO Uplink System Model
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• Consider a canonical cell-free system with M access points (APs) serving K users in uplink

• At a given time t, a subset K(t)
on ⊂ {1, . . . ,K} of users is active (slowly varying)

• Depending on its SINRk , an active user k achieves user utility uk = f (SINRk)

• The SINR depends on the users’ power allocations

⇒ Increasing the power ρk of user k will improve its utility, but may decrease other users’ utilities

⇒ Goal: learn to allocate power optimally

Enhancing the Uplink of Cell-Free Massive MIMO Through Prioritized Sampling and Personalized Federated Deep Reinforcement
Learning, C. F. Mendoza et al., IEEE Transactions on Cognitive Communications and Networking, early access, 2025
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Model-Based versus Model-Free Optimization

• Model-based optimization: user utility is available in analytical form

⇒ Classical optimization methods can be applied

• Model-free optimization: relies on observed data rather than (potentially inaccurate) models

⇒ Data-driven machine learning techniques

• Deep reinforcement learning (DRL): often combines both approaches

⇒ Initial model-based training in simulations (digital twins), followed by real-world fine-tuning

⇒ Keeps real-world training duration reasonable

• In our simulations, we train based on the Shannon rate

uk = B

(
1− τp

τc

)
log2 (1 + SINRk)

• SINR under MMSE detection considering pilot contamination and CSI imperfections

• In practice, uk could, for example, also be obtained from user feedback (CQI)
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Scalable vs. Non-Scalable Optimization

• We want to maximize a global utility:

max
ρ1,...,ρK

U (u1, . . . , uK )

subject to: 0 ≤ ρk ≤ ρmax, ∀k

⇒ Solving this problem centrally is not scalable as the network size grows

• We need a decentralized approach ⇒ multi-agent DRL

• Scalability could be achieved via AP-clustering ⇒ each cluster handled by a DRL agent

• Here, we consider the extreme case: one agent per user

• As an example, we consider the guaranteed user rate as the utility function

U (u1, . . . , uK ) = min
k∈K(t)

on

uk
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Three DRL Frameworks
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• Single-agent RL (SARL): CPU handles power allocation for all users

• Multi-agent RL (MARL): users make power allocation decisions

− Centralized training, decentralized execution (CTDE): same agent model shared across users

− Personalized federated learning (FPer): model parameters partially federated
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SARL – Details

• States of the single-agent environment
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SARL – Details (II)

• Double deep-Q networks (DDQN)

− Stabilizes training and reduces overestimation bias

− More robust in non-stationary environments

• Prioritized sampling

− Prioritizes experiences with high temporal-difference (TD)
error for replay

− Speeds up learning and improves sample efficiency

− Can introduce bias; requires importance-sampling
correction
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MARL CTDE – Details

• User-specific states and actions
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• Sharing of utilities at least in a neighborhood Nk ⊆ K

• No violation variables; only active users allocate power

• Global reward can be calculated by CPU
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• No need at users since training happens on CPU

• Training at CPU based on users’ experiences(
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k

)
• Reporting of action a

(t)
k is sufficient (could be estimated)
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MARL FPer – Details

• Users train local models based on their local experiences(
s(t)k , a

(t)
k , r

(t+1)
k , s(t+1)

k

)
,

r
(t+1)
k = min

j∈Nk

u
(t)
j

• States/rewards are determined over the neighborhood Nk

• Interference is negligible if users are sufficiently separated

• Early DDQN layers are periodically shared with the CPU

• CPU aggregates users’ layers and returns a federated model
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Comparison of DRL Frameworks – Static Scenario

• Small-scale scenario to allow for exhaustive search (best case upper bound)

• Selfish behavior (full power transmission) leads to reduced guaranteed rate

• Considering a neighborhood of only 40% of closest users is here not sufficient (small scenario)
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Comparison of DRL Frameworks – Transient Scenario

• Toggling of activation state of 20% of users after 250 episodes

• Personalized federated learning provides robust and fast adaptation capabilities
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Impact of Number of Power Levels

• Performance close to continuous power allocation with modest number of discrete power levels
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Remarks and Future Work

• The interference landscape is currently inferred from rate observations

⇒ Makes it relatively difficult for the DNN to disentangle mutual inter-dependencies

⇒ Acceptable when training in a DT, but too slow to adapt in direct real-world deployment

• Extend the state-space to provide additional information about mutual interference (path gains)

• Incorporate network structure into the DQN – graph neural networks (GNNs)

• Generalization and transferability across environments, user numbers, . . .
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RIS in Multi-Operator Environments

• RIS may be integrated into various objects

⇒ Network operators are unlikely to have a
monopoly on their deployment

• RIS technology can potentially support
multiple frequency bands

⇒ Not restricted to a single operator

• Who should be allowed to control the RIS
response configuration?

RIS-equipped building

RIS
-e

quip
ped tr

ain
 c

arr
ia

ge

⇒ We propose a competitive free-market setup

Gambling on Reconfigurable Intelligent Surfaces, S. Schwarz, IEEE Communications Letters, vol. 28, no. 4, 2024
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RIS Broking in Cell-free MIMO Setups

RIS Broker
On-demand assignment and con�guration of RIS 

Operator 2
Agent

Operator 2
Agent

Operator 2
Agent

Operator 1
Agent

Operator 1
Agent

User of operator 2

User of operator 1

RIS

• RIS control is dynamically assigned to operators by a RIS broker

• RIS-to-operator assignment is achieved through an auction

• The auction is repeated whenever there are significant changes in demand or user positions
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RIS Auction

• Simple auction format: simultaneously ascending forward auction

− In auction-round t, RIS broker sets a uniform price pt > pt−1 for available RISs

− Operators bid on RISs for which they are willing to pay the current price pt

− If only one operator bids on an RIS, it is assigned to this operator for payment pt

− If RISs are remaining, proceed to next round t + 1

− Auctioneer enforces an activity rule – bidders cannot enter late

• Challenges for operators:

− How to estimate the value of a RIS and decide whether or not to pay price pt?

⇒ The value of a RIS depends on which other RISs can be secured (combinatorial)

− How to design an efficient bidding strategy?
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RIS Allocation – Utility Definition and Estimation

• We employ the α-fair function family to quantify the utility of a RIS allocation R

U(o)(R) =

∑N
(o)
U

u=1

(
r̄
(o)
u (R)

)1/α

∑N
(o)
U

u=1

(
r̄
(o)
u (∅)

)1/α
− 1

. . . r̄
(o)
u (R) estimate of achievable rate of user u

α = 1. . . sum-rate, α → 0. . . max user rate, α → ∞ max-min user rate

• Rate estimation is based on macroscopic channel parameters, because the microscopic fading
channel is not known prior to RIS assignment

β̂u =

γ2
u,dPu,d +

(∑
r∈Rd

γu,rγr,dku,r

√
Pu,dMBS

|Rd |
MRIS

)2

+
∑
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γ2
u,rγ

2
r,d k̄

2
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|Rd |
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σ2
n +

∑
b ̸=d γ

2
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DRL-based Bidding

• Bidding in auction-round t based on the value of acquiring an additional RIS r

V
(o)
t (r) = U(o)

(
R(o)

t−1 ∪ r
)
− U(o)

(
R(o)

t−1

)
. . . assuming r is the sole secured RIS in round t – breaking combinatorial complexity

• Observations available to operators/agents

O(o)
t =

(
pt ,B

(o)
t ,

{
V

(o)
t (r)

∣∣∀r})
. . . only partial information; not the full state of the environment

• Reward achieved when winning RISs w
(o)
t

r (o) = c
(o)
V V

(o)
t

(
w

(o)
t

)
− pt

∣∣∣w (o)
t

∣∣∣ .

Penalty terms when bidding on already assigned RISs and when overshooting the budget
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Investigation of Utility, Costs and Reward

Utility

• Simple greedy bidding is a dominant strategy in terms of utility for each operator

• However, it is much more costly than DRL-based bidding

• Thus, DRL-based bidding achieves higher reward than greedy bidding
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Investigation of Operators’ Budgets

• With equal budgets both operators achieve the same performance for reasons of symmetry

• If one operator is willing to spend more, it can secure more RISs and therefore boost its performance
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Investigation of Operators’ Budgets

increasing budget 

of Operator 1

• With equal budgets both operators achieve the same performance for reasons of symmetry

• If one operator is willing to spend more, it can secure more RISs and therefore boost its performance
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Investigation of Users’ SINRs

shared RIS

• Single snapshot of positions of network elements; distribution over users and microscopic fading

• Sharing RISs can significantly improve the performance of both operators

• If all RISs are assigned to one operator, the performance of the other remains virtually unaffected
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Varying the Bidding Intensity

Costs
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• Bidding intensity c
(o)
V : how much operators are willing to spend
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Conclusions

• Multi-agent RL enables efficient decentralized, model-free optimization

• Real-world deployment can be improved through model-based pre-training or training
within a digital twin

• Approaches to coordinating multiple agents include:

− CTDE or FPer in cooperative scenarios with common goals

− Game-theoretic mechanisms such as auctions in competitive scenarios
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