Multi-Agent Deep Reinforcement Learning for Mobile Wireless Systems:
From Distributed Power Allocation to Auction-Based RIS Access

Associate Prof. Stefan Schwarz
in collaboration with: Charmae F. Mendoza, Martin Zan, Prof. Markus Rupp and Prof. Megumi Kaneko

December 2025, stefan.schwarz@tuwien.ac.at

Universitat Wien Telecommunications

P00
Technische Institute of . . .
Qaer




Contents

DRL-based Distributed Uplink Power Allocation

Auction-based RIS Access in Multi-Operator Environments

Conclusions

TU

Institute of Telecommunications



Contents

DRL-based Distributed Uplink Power Allocation

Auction-based RIS Access in Multi-Operator Environments

Conclusions

TU

Institute of Telecommunications Slide 3




Cell-free Massive MIMO

® Main issue of dense heterogeneous 4G/5G networks: inter-cell-interfence
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Cell-free Massive MIMO

® Main issue of dense heterogeneous 4G/5G networks: inter-cell-interfence

® Cell-free: independently operating cells are replaced by joint cloud-processing

= Interfering signals become useful signals
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Cell-free Massive MIMO Uplink System Model

[ cPU

e Consider a canonical cell-free system with M access points (APs) serving K users in uplink

e At a given time t, a subset K'Y C {1,..., K} of users is active (slowly varying)

Enhancing the Uplink of Cell-Free Massive MIMO Through Prioritized Sampling and Personalized Federated Deep Reinforcement [
Learning, C. F. Mendoza et al., IEEE Transactions on Cognitive Communications and Networking, early access, 2025 I lj
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Cell-free Massive MIMO Uplink System Model

[ cPU

e Consider a canonical cell-free system with M access points (APs) serving K users in uplink
e At a given time t, a subset K'Y C {1,..., K} of users is active (slowly varying)
e Depending on its SINRy, an active user k achieves user utility ux = f(SINRy)
® The SINR depends on the users’ power allocations
= Increasing the power pi of user k will improve its utility, but may decrease other users’ utilities

= Goal: learn to allocate power optimally

Enhancing the Uplink of Cell-Free Massive MIMO Through Prioritized Sampling and Personalized Federated Deep Reinforcement [
Learning, C. F. Mendoza et al., IEEE Transactions on Cognitive Communications and Networking, early access, 2025 I lj
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Model-Based versus Model-Free Optimization

e Model-based optimization: user utility is available in analytical form
= Classical optimization methods can be applied
e Model-free optimization: relies on observed data rather than (potentially inaccurate) models

= Data-driven machine learning techniques
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= Data-driven machine learning techniques

e Deep reinforcement learning (DRL): often combines both approaches
= Initial model-based training in simulations (digital twins), followed by real-world fine-tuning
= Keeps real-world training duration reasonable

® |n our simulations, we train based on the Shannon rate

u =B (1 - %) logs (1 + SINRy)

c

e SINR under MMSE detection considering pilot contamination and CSI imperfections

® |n practice, ux could, for example, also be obtained from user feedback (CQI)
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Scalable vs. Non-Scalable Optimization

® We want to maximize a global utility:

max U(u,..., uk)
PLrosPK

subject to: 0 < px < pmax, VK
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Scalable vs. Non-Scalable Optimization

® We want to maximize a global utility:

max U(u,..., uk)
PLrosPK

subject to: 0 < px < pmax, VK
= Solving this problem centrally is not scalable as the network size grows
e \We need a decentralized approach = multi-agent DRL
® Scalability could be achieved via AP-clustering = each cluster handled by a DRL agent
® Here, we consider the extreme case: one agent per user

® As an example, we consider the guaranteed user rate as the utility function

U(ul,...,uK)z min Uk
kexld)

TU

Institute of Telecommunications Slide 7 / 29 WIEN




Three DRL Frameworks

CPU

—

globaIT Tglobal lg\oba\
state reward action

Agent

Environment
—E
—EE
—E

e Single-agent RL (SARL): CPU handles power allocation for all users
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Three DRL Frameworks

CPU
Agent Centralized Training
DQN
globaIT Tglobal lg\oba\ local DQN
state reward action experiences parameters
I
g
2 ? ? 5
5 F=]
e 0 ? 3
s 9]
f= >
0 2
-
@
N
©
=
S Io:a\
o  state local reward action
O reward action

e Single-agent RL (SARL): CPU handles power allocation for all users
e Multi-agent RL (MARL): users make power allocation decisions

— Centralized training, decentralized execution (CTDE): same agent model shared across users
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Three DRL Frameworks

Agent Centralized Training

globaIT Tglobal lg\oba\ local DQN
state reward action experiences parameters

Environment
—E
—EE
—E

N

Io:a\
state local reward action
reward action

sta(e Iocal
stam local reward action
reward action

Decentralized Execution
Decentralized Training

e Single-agent RL (SARL): CPU handles power allocation for all users
e Multi-agent RL (MARL): users make power allocation decisions

— Centralized training, decentralized execution (CTDE): same agent model shared across users

— Personalized federated learning (FPer): model parameters partially federated le
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SARL - Details

e States of the single-agent environment

t t t—1 t—1 t—1 t—1
s(t):[df),.,.,d,((),vl( ),...,v,(< ),u§ ),...,u& )]
Priority

Prioritized \_ Mini-batch 9

1, ifp™>0andd" V=0

0, else Replay
Buffer

Agent

Sampling /' (5.a,05'p)i-o...x.1 Primary’ Target

V}Et_l) _

Reward State Action

@Q*—

Environment
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SARL - Details

e States of the single-agent environment

t t t—1 t—1 t—1 t—1
s(t):[df),.,.,d,((),vl( ),...,v,(< ),u§ ),...,u& )] o
Priority

Prioritized Mini-batch Q5:2:8yrine)
Sampling /' (s.a..5"p)i-o...x1

amax

Agent

Target

ey _ [ P >0and d"V =0
K 0, else

® Actions taken by the CPU

Reward State Action

alt) = [ (1t),...,p(Kt)} . Pk €{0,A,,20,, ..., Pmax}

Environment

Npow possible power levels = action space of size N,ﬁ,w
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SARL - Details

e States of the single-agent environment
SO = [, Dl

Prioritized QUS:2:8rime)

amax

Agent

Sampling

Target

ey _ [ P >0and d"V =0
K 0, else

® Actions taken by the CPU

Reward State Action

alt) = [ (1t),...,p(Kt)} . Pk €{0,A,,20,, ..., Pmax}

Environment

Npow possible power levels = action space of size N,ﬁ,w

e Rewards: r(t*1) = min, e u,(f) —y Y vﬁt)
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SARL — Details (Il)

e Double deep-Q networks (DDQN) D Brror 5
Priority

— Stabilizes training and reduces overestimation bias

Prioritized "\ _ Mini-batch Opine g ] AS28piine)
Sampling /' (s..0.8'p)i-o,_x.1 Primary

amax

Agent

— More robust in non-stationary environments

. . Replay
® Prioritized sampling

— Prioritizes experiences with high temporal-difference (TD)
error for replay

Reward State Action

— Speeds up learning and improves sample efficiency

Environment

— Can introduce bias; requires importance-sampling
correction

(=)
>
2

TU

te of Telecommunications Slide10 /29 WIEN



MARL CTDE — Details

® User-specific states and actions

- -1
o= [l fesd] o0 =l

e Sharing of utilities at least in a neighborhood Ny C K

Update

Priority
Prioritized "QUs,8:0ccu_prime
Sampling /' (s,a,5.8'p)i-0,..x-1 “m;

® No violation variables; only active users allocate power

Centralized
Training

Decentralized
Execution
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MARL CTDE — Details

® User-specific states and actions

- -1
o= [l fesd] o0 =l

Sharing of utilities at least in a neighborhood Ny C K

® No violation variables; only active users allocate power

Global reward can be calculated by CPU

min uf)

ket

r(t+1) _

® No need at users since training happens on CPU

Institute of Telecommunications

Centralized

Decentralized

Update

Priority
Prioritized "QUs,8:0ccu_prime
Sampling /' (s,a,5.8'p)i-0,..x-1 “m;
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Execution
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MARL CTDE — Details

® User-specific states and actions

(t—1) (t)

t t—1 t
Si) = [“i )aneNk] ) af() = Pk

e Sharing of utilities at least in a neighborhood Ny C K

. . . . Update
® No violation variables; only active users allocate power 3 Priority
on
N g H
=g Prioritized i TQGa8em pine
® Global reward can be calculated by CPU £ sumpling ) Gars pho 1 o
§ & >
3
1 . + Replay
A = min uf?

kex® o

® No need at users since training happens on CPU

Decentralized
Execution

e Training at CPU based on users’ experiences
(040,600,

Reporting of action af(t) is sufficient (could be estimated) le
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MARL FPer — Details

® Users train local models based on their local experiences

CPU
Waarg 1 Wiargk
(t) _(t) (t+1) _(t+1) Byprime,1 byrime k
(Sk ) ak ) rk ) sk ) biare,1 Walob_prime b k
Wt e
(t+1) . (1) Dyigb prime
rk = min u: Byiob targ
JEN,
UE,
e States/rewards are determined over the neighborhood N
e Interference is negligible if users are sufficiently separated

Update
Priority
Prioritized
Sampling

(5.2,55P)i-o...x1

Target
Replay
Buffer
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MARL FPer — Details

® Users train local models based on their local experiences
(50,90, f1),
r,EtH) = Jrg/l\?k u}t)
e States/rewards are determined over the neighborhood N
e Interference is negligible if users are sufficiently separated
e Early DDQN layers are periodically shared with the CPU
[ ]

CPU aggregates users' layers and returns a federated model

Institute of Telecommunications
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Comparison of DRL Frameworks — Static Scenario

18
216
Q
=2
Q
S141 ¢ <
~
—
Q
2]
o 12
d
E —»— Ref. Exhaustive
-©- Ref. Full Power
10
0 100 200 300 400 500

Episode

® Small-scale scenario to allow for exhaustive search (best case upper bound)

e Selfish behavior (full power transmission) leads to reduced guaranteed rate
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Comparison of DRL Frameworks — Static Scenario
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® Small-scale scenario to allow for exhaustive search (best case upper bound)

e Selfish behavior (full power transmission) leads to reduced guaranteed rate

e Considering a neighborhood of only 40% of closest users is here not sufficient (small scenario) le
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Comparison of DRL Frameworks — Transient Scenario
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e Toggling of activation state of 20% of users after 250 episodes

® Personalized federated learning provides robust and fast adaptation capabilities
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Impact of Number of Power Levels
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® Performance close to continuous power allocation with modest number of discrete power levels
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Remarks and Future Work

® The interference landscape is currently inferred from rate observations

= Makes it relatively difficult for the DNN to disentangle mutual inter-dependencies

= Acceptable when training in a DT, but too slow to adapt in direct real-world deployment
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Remarks and Future Work

The interference landscape is currently inferred from rate observations

= Makes it relatively difficult for the DNN to disentangle mutual inter-dependencies

= Acceptable when training in a DT, but too slow to adapt in direct real-world deployment

Extend the state-space to provide additional information about mutual interference (path gains)
e Incorporate network structure into the DQN — graph neural networks (GNNs)

® Generalization and transferability across environments, user numbers, . ..
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RIS in Multi-Operator Environments

® RIS may be integrated into various objects

= Network operators are unlikely to have a
monopoly on their deployment

e RIS technology can potentially support
multiple frequency bands

5

’)'.‘.\

= Not restricted to a single operator

® Who should be allowed to control the RIS
response configuration?

RIS-equipped building
= We propose a competitive free-market setup

]
Gambling on Reconfigurable Intelligent Surfaces, S. Schwarz, IEEE Communications Letters, vol. 28, no. 4, 2024 I l,
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RIS Broking in Cell-free MIMO Setups

RIS Broker

User of operator 1

Operator 1 [
Agent

s Operator 2
Agent

User of operator 2

® RIS control is dynamically assigned to operators by a RIS broker
® RIS-to-operator assignment is achieved through an auction

® The auction is repeated whenever there are significant changes in demand or user positions le

Institute of Telecommunications Slide19 /29 WIEN




RIS Auction

e Simple auction format: simultaneously ascending forward auction
— In auction-round t, RIS broker sets a uniform price p: > p;—1 for available RISs
— Operators bid on RISs for which they are willing to pay the current price p;

— If only one operator bids on an RIS, it is assigned to this operator for payment p;

If RISs are remaining, proceed to next round t + 1
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RIS Auction

e Simple auction format: simultaneously ascending forward auction
— In auction-round t, RIS broker sets a uniform price p: > p;—1 for available RISs
— Operators bid on RISs for which they are willing to pay the current price p;

— If only one operator bids on an RIS, it is assigned to this operator for payment p;

If RISs are remaining, proceed to next round t + 1

— Auctioneer enforces an activity rule — bidders cannot enter late
® Challenges for operators:

— How to estimate the value of a RIS and decide whether or not to pay price p:?
= The value of a RIS depends on which other RISs can be secured (combinatorial)

— How to design an efficient bidding strategy?
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RIS Allocation — Utility Definition and Estimation

e \We employ the a-fair function family to quantify the utility of a RIS allocation R
1/a
S (Hm))
(R) = e -1
> (Am)

7°)(R) estimate of achievable rate of user u

«a = 1...sum-rate, « — 0...max user rate, & — oo max-min user rate
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RIS Allocation — Utility Definition and Estimation

e \We employ the a-fair function family to quantify the utility of a RIS allocation R

@) ° 1/a
o (0)
(R) = 1

= (Rw) "

o)(R) estimate of achievable rate of user u

«a = 1...sum-rate, « — 0...max user rate, & — oo max-min user rate

® Rate estimation is based on macroscopic channel parameters, because the microscopic fading
channel is not known prior to RIS assignment

Pu dMBS

2
Vg,dPu,d + (Z,eRd ’Yu,r'Yr,dku,r “‘7‘% |BS MRlS) + ZrERd 7L2l,r7r dk2 Mris

O+ Dbra VabPisb + 2bsa 2orgry Vor Vo, Pis s Mris

Bu:
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DRL-based Bidding

e Bidding in auction-round t based on the value of acquiring an additional RIS r
VE(r) = U (R ur) - U (R,

... assuming r is the sole secured RIS in round t — breaking combinatorial complexity
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e Observations available to operators/agents
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DRL-based Bidding

e Bidding in auction-round t based on the value of acquiring an additional RIS r
VE(r) = U (R ur) - U (R,
... assuming r is the sole secured RIS in round t — breaking combinatorial complexity

e Observations available to operators/agents

0 = (pe, B, { VIO ()] vr})
... only partial information; not the full state of the environment

® Reward achieved when winning RISs wt(o)

Ao — Vt(")(wt“)) — o W)

o
w;

Penalty terms when bidding on already assigned RISs and when overshooting the budget
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Investigation of Utility, Costs and Reward
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® Simple greedy bidding is a dominant strategy in terms of utility for each operator
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Investigation of Utility, Costs and Reward
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® Simple greedy bidding is a dominant strategy in terms of utility for each operator

® However, it is much more costly than DRL-based bidding
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Investigation of Utility, Costs and Reward

104 e .- Reward

—— H - Reward
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Empirical cumulative distribution
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0.0 0.5 1.0 1.5 2.0 2.5
Observed data

® Simple greedy bidding is a dominant strategy in terms of utility for each operator
® However, it is much more costly than DRL-based bidding

® Thus, DRL-based bidding achieves higher reward than greedy bidding
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Investigation of Operators’ Budgets
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e With equal budgets both operators achieve the same performance for reasons of symmetry
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Investigation of Operators’ Budgets
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e With equal budgets both operators achieve the same performance for reasons of symmetry
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® |f one operator is willing to spend more, it can secure more RISs and therefore boost its performance

TU

Institute of Telecommunications

Slide 24 / 29



Investigation of Users’ SINRs
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Empirical cumulative distribution
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Instantaneous SINR [dB]

® Single snapshot of positions of network elements; distribution over users and microscopic fading
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Investigation of Users’ SINRs
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Instantaneous SINR [dB]

Empirical cumulative distribution

® Single snapshot of positions of network elements; distribution over users and microscopic fading
® Sharing RISs can significantly improve the performance of both operators

e |[f all RISs are assigned to one operator, the performance of the other remains virtually unaffected
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Varying the Bidding Intensity
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increasing bidding intensity
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e Bidding intensity cs/o): how much operators are willing to spend

o) = c\(/o) Vt(o)(wt(o)) — pt ‘Wt(o) .
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Conclusions

e Multi-agent RL enables efficient decentralized, model-free optimization

® Real-world deployment can be improved through model-based pre-training or training
within a digital twin
® Approaches to coordinating multiple agents include:

— CTDE or FPer in cooperative scenarios with common goals

— Game-theoretic mechanisms such as auctions in competitive scenarios
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